Effect of Complexing Lipids on Cellular Uptake and Expression of Messenger RNA in Human Skin Explants


Authors: A.K.. Blakney, P. Deletic, P.F. McKay, C.R. Bouton, M. Ashford, R.J. Shattock and A. Sabirsh

Journal: Journal of Controlled Release

DOI: 10.1016/j.jconrel.2020.11.033

Publication - Abstract

November 26, 2020

Highlights

mRNA was formulated in lipoplexes with ionizable, cationic or zwitterionic complexing lipids.

Cell populations in human skin were analyzed for RNA uptake and expression over 72 h.

Adipocytes exhibited the highest amount of protein expression despite lowest cell frequency.

Clustering revealed that particle charge, not lipid classification, was predictive of RNA expression.

Abstract

Messenger RNA (mRNA) represents a promising next-generation approach for both treatment and vaccination. Lipid based particles are one of the most investigated delivery systems for mRNA formulations. Here we explore how the complexing lipid affects uptake and translation of lipoplex-delivered RNA in resident cells in human skin explants and, we explore a more modular delivery system that utilizes mRNA added to pre-formed nanoparticles prior to dosing. We prepared formulations of lipoplexes with ionizable, cationic or zwitterionic lipids, externally complexed these with mRNA, and observed which cells internalized and/or expressed the mRNA over 72 h after intradermal injections into primary, human, skin explants. Using a flow cytometry panel to assess cellular phenotypes, mRNA uptake and mRNA expression, we found that, unlike other cell types, adipocytes expressed mRNA efficiently at 4 and 24 h after mRNA-lipoplex injection and contributed the greatest proportion of total RNA-encoded protein expression, despite being the lowest frequency cell type. Other cell types (epithelial cells, fibroblasts, T cells, B cells, dendritic cells, monocytes, NK cells, Langerhans cells, and leukocytes) had increasing mRNA expression over the course of 72 h, irrespective of lipoplex formulation. We observed that overall charge of the particle, but not the complexing lipid classification, was predictive for the pattern of mRNA uptake and expression among resident cell types in this model.

This study provides insight into maximizing protein expression, using modular mRNA lipoplexes that are more compatible with product development, in a clinically relevant, human skin explant model.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Read More


Publication - Summary

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical stu...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.