Preparation and Optimization of Lipid-Like Nanoparticles for mRNA Delivery


Authors: B. Li and Y. Dong

Journal: Methods in Molecular Biology

DOI: 10.1007/978-1-4939-7138-1_13

Publication - Abstract

July 21, 2017

Abstract:

Lipid-like nanoparticles (LLNs) have shown great promise for nucleic acid delivery. Recently, we have developed N1,N3,N5-tris(2-aminoethyl)benzene-1,3,5-tricarboxamide (TT) derived lipid-like compounds, formulated them into TT LLNs for mRNA delivery, and applied an orthogonal array design to facilitate formulation optimization. This chapter focuses on the following contents relevant to lipid-like nanoparticles: formulation method, particle characterization, orthogonal array design, and in vitro assays.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Abstract

Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition...
Read More


Publication - Abstract

Lipid Nanoparticle-Mediated siRNA Transfer Against PCTAIRE1/PCTK1/Cdk16 Inhibits In Vivo Cancer Growth

T. Yanagi, K. Tachikawa, R. Wilkie-Grantham, A. Hishiki, K. Nagai, E. Toyonaga, P. Chivukula and S. Matsuzawa

PCTAIRE1/CDK16/PCTK1 plays critical roles in cancer cell proliferation and antiapoptosis. To advance our previously published in vitro results with PCTAIRE1 silencing, we examined the in vivo therapeutic potential o...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.