Property-Driven Design and Development of Lipids for Efficient Delivery of siRNA


Authors: K. Rajuppan, S.P. Tanis, R. Mukthavaram, S. Roberts, M. Nguyen, K. Tachikawa, P. Karmali et. al.

Journal: Journal of Medicinal Chemistry

DOI: 10.1021/acs.jmedchem.0c01407

Publication - Abstract

October 29, 2020

Abstract

Ionizable cationic lipids are critical components involved in nanoparticle formulations, which are utilized in delivery platforms for RNA therapeutics. While general criteria regarding lipophilicity and measured pKa in formulation are understood to have impacts on utility in vivo, greater granularity with respect to the impacts of the structure on calculated and measured physicochemical parameters and the subsequent performance of those ionizable cationic lipids in in vivo studies would be beneficial. Herein, we describe structural alterations made within a lipid class exemplified by 4, which allow us to tune calculated and measured physicochemical parameters for improved performance, resulting in substantial improvements versus the state of the art at the outset of these studies, resulting in good in vivo activity within a range of measured basicity (pKa = 6.0–6.6) and lipophilicity (cLogD = 10–14).

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The Biomolecular Corona of Gold Nanoparticles in a Controlled Microfluidic Environment

L. Digiacomo, S. Palchetti, F. Giulimondi, D. Pozzi, R.Z. Chiozzi, A.L. Capriotti, A. Laganà, and G. Caracciolo

Nanoparticles (NPs) exposed to biological media are coated by proteins and other biomolecules forming a biomolecular corona (BC) on the particle surface. Recent studies have shown that shear stress as that created by laminar fluid flow generates more complex coronas with systemat...
Read More


Publication - Summary

Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia

D. An, J.L. Schneller, A. Frassetto, S. Liang, X. Zhu, J.S. Park, M. Theisen, S.J. Hong, J. Zhou J, R. Rajendran, B. Levy, R. Howell, G. Besin, V. Presnyak, S. Sabnis, K.E. Murphy-Benenato, E.S. Kumarasinghe, T. Salerno and P.G.V. Martini PGV

Inborn errors of metabolism (IEMs) can be relatively straight forward to screen for and diagnose; these disorders however, have currently very limited options for treatment. Methylmalonic acidemia (MMA), is an IEM caused by complete or partial defi...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.