Abstract
The construction protocol of bio-nanocapsule (BNC)-based nanocarriers, named GL-BNC and GL-virosome, for targeted drug delivery to macrophages is described here. First, genes encoding the Streptococcus sp. protein G-derived C2 domain (binds to IgG Fc) and Finegoldia magna protein L-derived B1 domain (binds to Igκ light chain) are prepared by PCR amplification. Subsequently, the genes encoding hepatic cell-specific binding domain of hepatitis B virus envelope L protein are replaced by these PCR products. The expression plasmid for this fused gene (encoding GL-fused L protein) can be used to transform Saccharomyces cerevisiae AH22R− cells. To obtain GL-BNC, the transformed yeast cells are disrupted with glass beads, treated with heat, and then subjected to IgG affinity column chromatography followed by size exclusion column chromatography. In addition, GL-BNCs can be fused with liposomes to form GL-virosome. The targeted delivery of GL-BNC and GL-virosome to macrophages can be confirmed by in vitro phagocytosis assays using the murine macrophage cell line RAW264.7.