The Impact of Solvent Selection: Strategies to Guide the Manufacturing of Liposomes Using Microfluidics


Authors: C. Webb, S. Khadke, S.T. Schmidt, C.B. Roces, N. Forbes, G. Berrie and Y. Perrie

Journal: Pharmaceutics

DOI: 10.3390/pharmaceutics11120653

Publication - Abstract

December 04, 2019

Abstract

The aim of this work was to assess the impact of solvent selection on the microfluidic production of liposomes. To achieve this, liposomes were manufactured using small-scale and bench-scale microfluidics systems using three aqueous miscible solvents (methanol, ethanol or isopropanol, alone or in combination). Liposomes composed of different lipid compositions were manufactured using these different solvents and characterised to investigate the influence of solvents on liposome attributes. Our studies demonstrate that solvent selection is a key consideration during the microfluidics manufacturing process, not only when considering lipid solubility but also with regard to the resultant liposome critical quality attributes. In general, reducing the polarity of the solvent (from methanol to isopropanol) increased the liposome particle size without impacting liposome short-term stability or release characteristics. Furthermore, solvent combinations such as methanol/isopropanol mixtures can be used to modify solvent polarity and the resultant liposome particle size. However, the impact of solvent choice on the liposome product is also influenced by the liposome formulation; liposomes containing charged lipids tended to show more sensitivity to solvent selection and formulations containing increased concentrations of cholesterol or pegylated-lipids were less influenced by the choice of solvent. Indeed, incorporation of 14 wt% or more of pegylated-lipid was shown to negate the impact of solvent selection.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Microfluidics is a very facile and fast method of particulate production. Besides, it enables the manufacturing of size tuned particulate systems. Niosomes due to structural similarities have importance as alternative drug delivery systems to liposomes. Niosomes can be encapsulat...
Read More


Publication - Abstract

Stimuli-responsive nanogels are important drug and gene carriers that mediate the controlled release of therapeutic molecules. Herein, we report the synthesis of fully degradable disulfide cross-linked nanogel drug carriers formed by oxidative radical polymerization of 2,2′...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.