Neurotoxic Mechanisms by which the USP14 Inhibitor IU1 Depletes Ubiquitinated Proteins and Tau in Rat Cerebral Cortical Neurons: Relevance to Alzheimer's Disease


Authors: M.J. Kiprowska, A. Stepanova, D.R. Todaro, A. Galkin, A. Haasd, S.M. Wilson and M.E. Figueiredo-Pereira

Journal:  Biochimica et Biophysica Acta

DOI: 10.1016/j.bbadis.2017.03.017

Publication - Abstract

April 01, 2017

Abstract:

In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1 > 25 μM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1 ~ Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1 ≤ 25 μM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1 ~ Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1 ~ Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

Design of Lipid nanoparticles for In Vitro and In Vivo Delivery of Plasmid DNA

J.A. Kulkarni, J.L. Myhre, S. Chen, Y.Y. Tam, A. Danescu, J.M. Richman and P.R. Cullis

Advances in molecular biology have led to great interest and potential in applying gene therapy to correct/ regulate expression of disease-related genes that are otherwise undruggable. Gene therapy is one of the great pillars of the newly emerging ...

Read More


Publication - Abstract

Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery

E. Quagliarini, S. Renzi, L. Digiacomo, F. Giulimondi, B. Sartori, H. Amenitsch, V. Tassinari, L. Masuelli, R. Bei, L. Cui, J. Wang, A. Amici, C. Marchini, D. Pozzi, and G. Caracciolo

With recent successes reflected in literature on mRNA delivery using LNPs, scientists from the University of Rome set out to investigate whether that success can be achieved with plasmid DNA delivery using LNPs (pDNA-LNPs). Authors Quagliarini et al. 2021 synthesized pDNA-LNPs us...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.