Microfluidic Manufacture of Solid Lipid Nanoparticles: A Case Study on Tristearin-Based Systems


Authors: G. Anderluzzi and Y. Perrie

Journal: Drug Delivery Letters

DOI: 10.2174/2210303109666190807104437

Publication - Abstract

September 10, 2020

Abstract

Background:
Solid lipid nanoparticles are lipid-based carriers that can be used for a range of drugs and biomolecules. However, most production methods currently used do not offer easy translation from laboratory preparation to scale-independent production.

 

Objectives:
Within this study, we have investigated the use of microfluidics to produce solid lipid nanoparticles and investigated their protein loading capability. In the development of this process, we have investigated and identified the critical process parameters that impact on the product attributes of the solid lipid nanoparticles.

 

Methods:
Solid lipid nanoparticles based on Tristearin and 1,2-Distearoyl-phosphatidylethanolaminemethyl- polyethyleneglycol conjugate-2000 were formulated using the NanoAssemblr® Benchtop system. The flow rate ratio, total flow rate and initial protein concentration were investigated as process parameters and the particle size, PDI, zeta potential, drug loading and drug release were measured as product attributes.

 

Results:
Our results demonstrate the suitability of microfluidics as a production method for solid lipid nanoparticles containing protein. In terms of key process parameters to consider, both the solvent to aqueous flow rate ratio and the total flow rate were shown to have a notable impact on particle size. Protein loading capacity was influenced by the solvent to aqueous flow rate ratio but was similar across all flow rates tested.

 

Conclusion:
Within this study, we outline a rapid and easy protocol for the scale-independent production of solid lipid nanoparticles. This process can support the rapid translation of production methods from bench to clinic.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable ...
Read More


Publication - Abstract

A Scalable Method for Squalenoylation and Assembly of Multifunctional 64Cu-Labeled Squalenoylated Gemcitabine Nanoparticles

S.T. Tucci, J.W. Seo, H. Kakwere, A. Kheirolomoom, E.S. Ingham, L.M. Mahakian, S. Tam, S. Tumbale, M. Baikoghli, H. Cheng and K.W. Ferrara

Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) c...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.