New Developments in Liposomal Drug Delivery


Authors: B.S. Pattni, V.V. Chupin and V.P. Torchilin

Journal: Chemical Reviews

DOI: 10.1021/acs.chemrev.5b00046

Publication - Abstract

October 14, 2015

Abstract:


Described first in the 1960s by Bangham1 and understood as a potential drug delivery system in the early 1970s,2−4 the liposome has since become integral to research and clinical applications in the field of nanomedicine. Five decades of research in the field of liposome research have shown their prospective benefits in the medical and cosmetic5−7 as well as the food industry.8,9 Several promising small molecule drugs and genes previously deemed less than useful due to problems of stability, solubility, and nonspecific toxicity can now be delivered to the intended sites of action with the help of nanocarriers like micelles, nanoparticles, and liposomes.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct

R. Jain, J.P. Frederick, E.Y. Huang, K.E. Burke, D.M. Mauger, E.A. Andrianova, S.J. Farlow, S. Siddiqui, J. Pimentel, K. Cheung-Ong, K.M. McKinney, C. Köhrer, M.J. Moore and T. Chakraborty

The advent of therapeutic mRNAs significantly increases the possibilities of protein-based biologics beyond those that can be synthesized by recombinant technologies (eg, monoclonal antibodies, extracellular enzymes, and cytokines). In addition to their application in the areas o...
Read More


Publication - Abstract

Therapeutic Shutdown of HBV Transcripts Promotes Reappearance of the SMC5/6 Complex and Silencing of the Viral genome In Vivo

L. Allweiss, K. Giersch, A. Pirosu, T. Volz, R.C. Muench, R.K. Beran, S. Urban, H. Javanbakht, S.P. Fletcher, M. Lütgehetmann and M. Dandri

These results reveal that therapeutics abrogating all HBV transcripts including HBx promote epigenetic suppression of the HBV minichromosome, whereas strategies protecting the human hepatocytes from reinfection are needed to maintain cccDNA silencing.
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.