Combined Hybrid Structure of siRNA Tailed IVT mRNA (ChriST mRNA) for Enhancing DC Maturation and Subsequent Anticancer T Cell Immunity


Authors: K. Lee, T.S. Kim, Y. Seo, S.Y. Kim and H. Lee

Journal: Journal of Controlled Release

DOI: 10.1016/j.jconrel.2020.08.009

Publication - Abstract

August 11, 2020

Abstract

RNA therapeutics have received much attention in the development of anti-cancer therapies. Among them, synthetic mRNA (IVT mRNA) was investigated for cancer immunotherapy due to its abilities to express tumor associated antigens with stimulation of immune responses in dendritic cells (DCs). Despite of its great potential, several hurdles were remained such as insufficient immune stimulation and DC maturation. In this study, we aimed to present a novel IVT mRNA that can simultaneously express tumor associated antigens while suppress STAT3 proteins. Combined functions of siRNA and IVT mRNA were investigated and the hybrid structure of siRNA tailed mRNA (ChriST mRNA) was developed. We prepared the ChriST mRNA by employing polyA tail structures with RNAi sequences at the 3′ end of mRNA. Complementary strands were annealed to form duplex siRNA structure to induce STAT3 gene silencing. In addition, a hybrid structure of DNA/RNA was introduced into the ChriST mRNA between polyA tail and RNAi sequences. It was expected that DNA/RNA duplex would be readily cleaved by RNase H in the intracellular environment. After the cleavage, ChriST mRNA was fully functionalized in cells and exhibited enhanced tumor specific DC maturation.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Chimeric antigen receptor (CAR) T cell therapy relies on the ex vivo manipulation of patient T cells to create potent, cancer-targeting therapies, shown to be capable of inducing remission in patients with acute lymphoblastic leukemia and large B cell lymphoma....
Read More


Publication - Abstract

The in vivo roles for even the most intensely studied microRNAs remain poorly defined. Here, analysis of mouse models revealed that let-7, a large and ancient microRNA family, performs tumor suppressive roles at the expense o...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.