Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach


Authors: R. Molinaro, M. Evangelopoulos, J. Hoffman, C. Corbo, F. Taraballi, J. Martinez, Kelly. Hartman, D. Cosco, G. Costa, I. Romeo, M. Sherman, D. Paolino ,S. Alcaro and E. Tasciotti

Journal: Advanced Material

DOI: 10.1002/adma.201702749

Publication - Abstract

March 07, 2018

Abstract

The advancement of nanotechnology toward more sophisticated bioinspired approaches has highlighted the gap between the advantages of biomimetic and biohybrid platforms and the availability of manufacturing processes to scale up their production. Though the advantages of transferring biological features from cells to synthetic nanoparticles for drug delivery purposes have recently been reported, a standardizable, batch‐to‐batch consistent, scalable, and high‐throughput assembly method is required to further develop these platforms. Microfluidics has offered a robust tool for the controlled synthesis of nanoparticles in a versatile and reproducible approach. In this study, the incorporation of membrane proteins within the bilayer of biomimetic nanovesicles (leukosomes) using a microfluidic‐based platform is demonstrated. The physical, pharmaceutical, and biological properties of microfluidic‐formulated leukosomes (called NA‐Leuko) are characterized. NA‐Leuko show extended shelf life and retention of the biological functions of donor cells (i.e., macrophage avoidance and targeting of inflamed vasculature). The NA approach represents a universal, versatile, robust, and scalable tool, which is extensively used for the assembly of lipid nanoparticles and adapted here for the manufacturing of biomimetic nanovesicles.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

Liposomes have been one of the most exploited drug delivery systems in recent decades. However, their large-scale production with low batch-to-batch differences is a challenge for industry, which ultimately delays the clinical translation of new products. We have investigated the...
Read More


Publication - Abstract

A High-throughput Galectin-9 Imaging Assay for Quantifying Nanoparticle Uptake, Endosomal Escape and Functional RNA Delivery

M.J. Munson, G. O'Driscoll, A.M. Silva, E. Lázaro-Ibáñez, A. Gallud, J.T. Wilson, A. Collén, E.K. Esbjörner and A. Sabirsh

RNA-based therapies have great potential to treat many undruggable human diseases. However, their efficacy, in particular for mRNA, remains hampered by poor cellular delivery and limited endosomal escape. Development and optimisation of delivery vectors, such as lipid nanoparticl...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.