Humanized Biomimetic Nanovesicles for Neuron Targeting


Authors: A. Zinger, C. Cvetkovic, M. Sushnitha, T. Naoi, G. Baudo, M. Anderson, A. Shetty, N. Basu, J. Covello, E. Tasciotti, M. Amit, T. Xie, F. Taraballi, and R. Krencik

Journal: Advanced Science

DOI: https://doi.org/10.1002/advs.202101437

Publication - Abstract

August 11, 2021

In an article written by Zinger et al. 2021 from the Center for Musculoskeletal Regeneration at the Houston Methodist Research Institute, the challenge of reproducible and scalable therapeutic drug delivery with high cell specificity to neural cells was investigated through analysis of biomimetic nanovesicle (neurosomes) physiochemical properties. Neurosomes synthesized by NanoAssemblr ® microfluidic based technology are liposomes that contain membrane proteins, such as NCAM1, sourced from human pluripotent stem-cell (hSPC) neurons. Consistency in particle morphology, size, and homogeneity alongside high customizability in modulating protein:lipid ratios contributed to an increase uptake in neurosomes into cultured neurons as highlighted by the paper. Further administration of the neurosomes in vitro using organoid-based spheres originated from cultured hPSC-derived iNeurons, and in vivo using rodent trigeminal ganglion cells resulted in higher association of neurosomes with the respective cells. This result is indicative of higher neural targeting when compared to non-protein liposomes which may play an essential role in future developments with delivery of specific therapeutic cargoes, such as, neural growth factors for outgrowth or synaptic connectivity to address a wide range of neurological diseases.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Summary

MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct

R. Jain, J.P. Frederick, E.Y. Huang, K.E. Burke, D.M. Mauger, E.A. Andrianova, S.J. Farlow, S. Siddiqui, J. Pimentel, K. Cheung-Ong, K.M. McKinney, C. Köhrer, M.J. Moore and T. Chakraborty

The advent of therapeutic mRNAs significantly increases the possibilities of protein-based biologics beyond those that can be synthesized by recombinant technologies (eg, monoclonal antibodies, extracellular enzymes, and cytokines). In addition to their application in the areas o...
Read More


Publication - Abstract

The world-first success of lipid nanoparticle (LNP)-based siRNA therapeutics (ONPATTRO®) promises to accelerate developments in siRNA therapeutics/gene therapy using LNP-type drug delivery systems (DDS). In this study, we explore the optimal composition of an LNP containing a...
Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.