A Glu-urea-Lys Ligand-Conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression in Vivo


Authors: J.B. Lee, K. Zhang, Y.Y. Tam, J. Quick, Y.K. Tam, P.J. Lin, S. Chen, Y. Liu, J.K. Nair, I. Zlatev and K.G. Rajeev

Journal: Nucleic Acids

DOI: 10.1038/mtna.2016.43

Publication - Abstract

April 03, 2016

Abstract:

The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle (LNP) formulation containing small interfering RNA (siRNA) designed to silence expression of the messenger RNA 9mRNA) encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer.

Advanced Search

close
  • Publications
  • Application Notes
  • Posters
  • Workshops
  • Videos & Webinars
  • Articles
Search

Browse by Category

  • Application
    • Diagnostic and Imaging
    • Genetic Medicine
    • Hematology
    • Metabolic Disorders
    • Neuroscience
    • Oncology
    • Skeletal Disorders
    • Targeted Drug Delivery
    • Vaccines
    • Other Applications
    • Cell therapy
  • Formulation
    • Liposomes
    • Nucleic Acid Lipid Nanoparticles
    • Polymeric Nanoparticles
    • Other Formulations
  • Payload
    • DNA
    • microRNA
    • mRNA
    • siRNA
    • Small Molecule Drugs
    • Other Payloads


related content

Publication - Abstract

The ability to control chemical functionality is an exciting feature of modern polymer science that enables precise design of drug delivery systems. Ring-opening polymerization of functional monomers has emerged as a versatile method to prepare clinically translatable degradable ...
Read More


Publication - Abstract

In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-depend...

Read More


Sign Up and Stay Informed
Sign up today to automatically receive new Cytiva, formerly Precision NanoSystems application notes, conference posters, relevant science publications, and webinar invites.